Interprocess Communication
Describe the actions taken by a kernel to context-switch between processes.
Cooperating processes require an interprocess communication (IPC) mechanism that will allow them to exchange data and information.
There are two fundamental models of interprocess communication: shared memory and message passing.
[bookmark: _GoBack][image: ]
	shared-memory model
	Message passing model

	A region of memory that is shared by cooperating processes is established. Processes can then exchange information by reading and writing data to the shared region.
	In the message-passing model, communication takes place by means of messages exchanged between the cooperating processes.


	faster than message passing

	*Slower because it’s implemented using system calls and thus require the more time-consuming task of kernel intervention. 
*Useful for exchanging smaller amounts of data, because no conflicts need be avoided.


	A shared-memory region resides in the address space of the process creating the shared-memory segment. Other processes that wish to communicate using this shared-memory segment must attach it to their address space.
	Provides a mechanism to allow processes to communicate and to synchronize their actions without sharing the same address space.
*useful (easier to implement)in a distributed environment, where the communicating processes may reside on different computers connected by a network.

	system calls are required only to establish shared memory regions.
Then: all accesses are treated as routine memory accesses, and no assistance from the kernel is required.
	A message-passing facility provides at least two operations:
send(message) receive(message)

	For example, a web server produces (that is, provides) HTML files and images, which are consumed (that is, read) by the client web browser requesting the resource.
	We generally think of a server as a producer and a client as a consumer. For example, a web server produces (that is, provides) HTML files and images, which are consumed (that is, read) by the client web browser requesting the resource.

	Shared memory suffers from cache coherency issues, which arise because shared data migrate among the several caches.
	Research indicates that it provides better performance than shared memory on systems with several cores



If processes P and Q want to communicate: a communication link must exist between them.
Several methods for logically implementing a link and the send()/receive() operations:
•Direct or indirect communication (Naming)
• Synchronous or asynchronous communication
• Automatic or explicit buffering
1- Direct or indirect communication (Naming)

	Direct: Each process that wants to communicate must explicitly name the recipient or sender of the communication.(symmetry in addressing)
	Direct: asymmetry in addressing. Here, only the sender names the recipient; the recipient is not required to name the sender.
	Indirect: the messages are sent to and received from
mailboxes, or ports
A mailbox: like an object into which messages can be placed by processes and from which messages can be removed.

	the send() and receive() primitives are defined as:
• Send (P, message)—Send a message to process P.
• receive(Q, message)—Receive a message from process Q.
	the send() and receive() primitives are defined as follows:
• Send (P, message)—Send a message to process P.
• receive (id, message)—Receive a message from any process. The variable id is set to the name of the process with which communication has taken place.
	send() and receive() primitives are defined as follows:
• send(A, message)—Send a message to mailbox A.
• receive(A, message)—Receive a message from mailbox A.

	
	
	· Each mailbox has a unique ID. Example, POSIX message queues use an integer value to identify a mailbox.
· A process can communicate with another process via a number of different mailboxes, but two processes can communicate only if they have a shared mailbox.


	•A link is established automatically between every pair of processes that want to communicate. The processes need to know only each other’s identity to communicate.
• A link is associated with exactly two processes.
• Between each pair of processes, there exists exactly one link.
	
	• A link is established between a pair of processes only if both members of the pair have a shared mailbox.
• A link may be associated with more than two processes.
• Between each pair of communicating processes, a number of different links may exist, with each link corresponding to one mailbox.

	The disadvantage in both of these schemes (symmetric and asymmetric)
is the limited modularity of the resulting process definitions (Changing the identifier of a process may necessitate examining all other process definitions).
	







2-Synchronization
Communication between processes takes place through calls to send() and receive() primitives.
There are different design options for implementing each primitive:
• Blocking send. 
• Nonblocking send. 
• Blocking receive. 
• Nonblocking receive. 
	
	Sending process
	Receiving process

	Blocking(synchronous)
	Blocked 
	Waiting the massage to recive

	
	Waiting the message to be available
	blocked

	rendezvous
	blocked
	Blocked(both)

	Nonblocking (asynchronous).
	Sends the message and waits 
	

	
	
	Retrieves either a valid or null message




3-Buffering
Messages exchanged by communicating processes reside in a temporary queue whether communication is direct or indirect.
Such queues can be implemented in three ways:
	
	Zero capacity.
	Bounded capacity.
	Unbounded capacity.

	Queue length
	queue has a maximum length of zero
	queue has finite length n; at most n messages can reside in it
	queue’s length is infinite

	link
	The link cannot have any messages waiting in it.
	A: Queue is not full: any new message is placed in it when arrived.
B:the link is full:
	Any number of messages can wait in the queue.

	sender
	The sender must block until the recipient receives the message.
	A:sender can continue execution without waiting
B: the sender must block until space is available in the queue.
	The sender never blocks



image1.emf

